Sound engine

Orbiter

Orbiter is at the heart of Vector. Each Corner (6) of the universe, or rather, the two-dimensional space (1), is formed by two Overtone Generators, Overtone Blend, and a filter.

The space also contains two orbs, blue (4) and green (5). The blue orb follows a given trajectory within the two-dimensional space, which is determined by Warp. The green orb orbits around the blue orb in a circular motion. This motion is referred to as Suborbit and its speed can be synchronized to the main Tempo. Suborbit Size and Suborbit Speed can be controlled by dedicated knobs. The whole mechanism is called the Orbiter.

_images/orbiter.png

When a note is triggered, all four Corners play simultaneously and the final mix point of their outputs is determined by the green orb’s position.

The centre point (2) as well as the rotation and size of the Orbiter trajectory can be set from the touchscreen interface. When Retrigger retrigger is enabled, the Orbiter motion always starts from the beginning of the shape – its zero phase (3) – on note input or after each cycle of the Arpeggiator sequence. Note that the zero phase can be changed by Warp.

Hints

  • To control the movement of the Orbiter manually, press the Focus button once to stop the Orbiter movement along the warped trajectory.

  • The centre point of the Orbiter can be also controlled by MIDI Control Change (CC) messages.

  • If your MIDI controller supports aftertouch, try routing it to the Suborbit Speed CC.

Corners

Corners are the origin of sound synthesis in Vector.

Each of the four Corners consists of two Overtone Generators with six specific overtone patterns. The two generators are combined by the Blend element – additive in the first half (G1+G2), modulated in the second (G1×G2). In addition, each of the Corners has an associated filter which can be placed after Generator, Blend or Mix in the Corner Matrix.

All four Corners play at the same time and the resulting Mix is modulated by the position of the Orbiter.

_images/corner_blocks.png

Each Corner is controlled by five parameters (Overtone Gen 1 and 2, Overtone Blend, Filter Cutoff and Filter Resonance) which are assigned to the five knobs just below the display. These knobs increase or decrease values of the selected Corners’ parameters.

The individual filters’ resonances are limited by the Global Resonance knob.

Hint

The Corners under editing can be changed in the Corner Matrix.

Warp

The Orbiter trajectory is defined by a warped shape.

Three Lissajous shapes warp_lis1 warp_lis2 warp_lis3 with increasing complexity or an ADSR shape warp_adsr can be selected on the Orbiter screen screen_orbiter. These shapes can then be distorted by dragging the rectangular Warp Pad (just below the shape selector) horizontally and vertically.

The Lissajous shapes are always periodic and their sped can be set relatively (1× to 8×) to the main Tempo using one of the speed selectors below the Warp Pad. Moreover, the resulting trajectory can be resized, moved or rotated by dragging it on the Orbiter screen.

When the ADSR shape is selected, the Orbiter follows a figure in which each stage of the envelope covers a different segment of the 2D space. The segments can be warped individually based on the segment selectors below the Warp Pad (A-D, D-S, S-R), while their endpoints can be moved on the Orbiter screen to form the desired trajectory. It is possible to use the same ADSR envelope for both amplitude and Orbiter or to have two independent sets of values depending on the selected configuration. See the Envelope section for more details.

The initial orbiter shape and position can be restored using the Warp Reset warp_reset button.

The picture below shows examples of warped Lissajous and ADSR shapes.

_images/warp.png

Synthesis

Overtone Generators

The Overtone Generators produce overtones (harmonics) in seven specific patterns. The first six patterns A-F are described in the table below while the seventh pattern, N, generates random noise. For a familiar mental model, It might be useful to think of the overtone patterns in a similar way as you would think of accordion or organ registers.

_images/generators.png

Patterns A–C include even-ish overtones while patterns D–F are more odd-ish (note that the 1st overtone, the fundamental, is always present). Some overtones are present with positive and other with negative amplitudes, making it possible to subtract overtones when blending two patterns together.

Hint

The blend of overtone patterns C and D produces a sawtooth waveform.

The amplitudes of the overtones decrease such that the amplitude of the n-th overtone is either 1/n or -1/n, depending on the sign in the table.

The Noisy overtones pattern (N) generates random noisy content above the fundamental frequency played. It is based on a pink noise (1/f) generator with a resonant high pass filter tuned to the fundamental and can be used on its own or employed as a modulator or carrier in the all Blend modes.

Overtone Blend

The Overtone Generators 1 and 2 can be blended together using the Overtone Blend knob. When the knob is in the centre position, the resulting set of overtones equals to Generator 1 (while Generator 2 is ignored).

Outside of the centre position, Blend operates in two different modes: Additive in the left and Modulated in the right half of the range.

Additive mode

When moving the knob to the left from the centre, the two generators are blended additively and the Overtone Blend knob determines the amount of Generator 2 overtones added to or subtracted from the overtones produced by Generator 1 (depending on the +/- signs in the Overtone Generators table), with the leftmost position corresponding to G1+G2.

_images/blend_add.png

Modulated mode

When turning the knob to the right from the centre, the two generators are modulated (marked as G1×G2). Three different modulations are available for selection in the Corner Matrix for each Overtone Blend:

  • Amplitude modulation (AM),

  • Phase modulation (PM), and

  • Combination of both (PM+AM).

In the Amplitude modulation mode, Generator 1 and Generator 2 are amplitude cross-modulated at the audio rate.

_images/blend_am.png

In the Phase modulation mode, Generator 1 is a carrier and Generator 2 is a modulator while the Overtone Blend knob determines the amount of the modulation.

_images/blend_fm.png

Finally, in the Combined PM+AM modulation mode, Generator 2 frequency-modulates Generator 1, and then the result is audio-rate amplitude cross-modulated between the frequency-modulated Generator 1 and the original Generator 2.

_images/blend_fmam.png

Corner Matrix

The Corner Matrix is accessible on the Orbiter screen screen_orbiter through the Corner Matrix button and allows for

  1. selection of the Corners under editing (with Single or Multi selection possible),

  2. versatile configuration of four independent filters (each filter can be placed to any point in the synthesis engine pipeline or Bypassed),

  3. selection of the modulation (G1×G2) mode for each Overtone Blend (PM, AM or Both), and

  4. configuration of the Randomizer (Corners, Matrix or Both).

_images/filter_matrix.png

The picture above shows the Corner Matrix interface with four tabs representing each filter and four rows corresponding to each Corner.

To select Corners for editing, tap one or more of the buttons (labeled 1 to 4) in the first column. The selected Corners can then be controlled by the five Corner parameters knobs just below the display.

To slot a filter, select one of the four filters on the tabs (labeled Filter 1 to Filter 4) and then tap one of the elements in the Corner Matrix. The filter is then placed between the selected element’s output and the next element’s input, as an insert.

In this particular example, Filter 1 is currently under editing and it is configured as a high-pass filter tracking the fundamental frequency of played notes. Filter 2 is placed after Blend of Corner 2, Filter 3 is placed after Generator 2 of Corner 3 and Filter 4 is placed after Generator 1 of Corner 4 – the number of the filter is always indicated by one of the four icons for convenience. Two Corners 1 and 2 are selected, which means their values are changed by the five knobs just below the display.

Hints

  • Notice the signal flow of the corners pipeline: the signal is cascading down in such a way, that if a filter is placed on the Mix element, that filter will process the sum of all previous corners’ outputs.

  • The behaviour of the Corner Matrix button can be configured in Global settings.

Filter types

Three different 12dB per octave filter types are available:

  • hpf High-pass filter passes frequencies above Filter Cutoff (and attenuates frequencies below the cut-off frequency).

  • lpf Low-pass filter passes frequencies below Filter Cutoff.

  • bpf Band-pass filter passes frequencies inside a band with its centre (resonant) frequency defined by Filter Cutoff.

A filter can be configured to either Track the played notes (so the cut-off frequency is relative to the fundamental frequency of the note) or interpret the cut-off frequency as an absolute value.

If a filter is Static, it is assigned to one specific Corner of the Orbiter (Filter 1 to Corner 1 etc.), which means its properties are always controlled by the specific Corner’s parameter no matter where in the Corner Matrix it is placed. Otherwise the parameters Filter Cutoff and Filter Resonance are modulated by the current Orbiter’s position, as shown by the top-most bar of the Resonance and Cutoff indicators at the bottom of the screen.

Hint

By stacking filters on top of each other, they will be processed serially. Filters of the same type and tuning will effectively increase their total cutoff to up to 48dB/oct, but beware of out of control resonances in such scenarios.

Randomizer

The Randomizer is available on the Orbiter screen screen_orbiter and allows for randomization of the four Corners’ parameters, the Corner Matrix or both, depending on the Randomizer configuration.

The Randomize randomize button generates a new set of parameters for all selected Corners (and the Corner Matrix) while the Undo randomize_undo button reverts back to the previous state.

Hint

The scope of the Randomizer can be configured in the Corner Matrix.

Polyphony

Vector supports three distinct polyphony modes with different sets of parameters.

Available parameters in different modes

 

Mono

Dual

Poly

Detune

Stack

Follower

Drift

Glide/Stereo

Glide

Stereo Bias

Stereo Scatter

Volume

Stack

Follower

Suborbit Offset

Follower

Voices

1 to 16

8

16

Poly Mode

In the Poly Mode, each new note is played by a separate voice, resulting in a 16-voice polyphony. New individual voices can be randomly scattered (panned) across the stereo space using the Glide/Stereo knob and periodically randomly detuned by an amount controlled by the Detune Drift knob.

Dual Mode

In the Dual Mode, each note is played by a separate voice which is complemented by a second follower voice with an altered pitch and amplitude. This mode thus effectively reduces the maximum number of concurrently playing voices to eight.

The pitch of the follower voice can be adjusted by the Detune Follower knob while the amplitude is controlled by the Follower Volume slider on the Effects screen screen_effects.

The Suborbit Offset slider controls the suborbit phase offset between the main and the follower voice and the Glide/Stereo knob controls the stereo bias of the main voice (with the 50% value representing no bias). When the main voice is biased to the left, the follower voice is panned to the right and vice versa.

Mono Mode

In the Mono Mode, all voices form a voice stack dedicated to playing one note, with each of the voices being slightly detuned by an amount derived from the Detune Stack knob and panned (evenly spread across the stereo space).

The number of available voices can be reduced using the Voices slider on the Effects screen screen_effects, which when reduced to a single voice makes Vector act as a monophonic synthesizer. The Stack Volume controls the relative amplitudes of the voices in the stack except for the first voice.

The Glide knob controls the portamento time (i.e. the amount of time it takes to change the oscillator pitch between two overlapping notes). Glide can thus be used to play a legato effect by pressing a note followed by another note without releasing the first one. Legato can be also played by the Arpeggiator if two adjacent steps are chained arp_joint together.

Arpeggiator

The Arpeggiator records notes from its input and plays them out sequentially in eight steps, with multi-octave transpositions.

The Active switch enables or disables the arpeggiator while the Note Length knob adjusts the length of notes played in each step relatively to the arpeggiator tempo (which is derived from the main Tempo and can be set to different time signatures).

Step Grid

The Effects screen screen_effects allows for more detailed control over the arpeggiator. The Step Grid (2) represents the arpeggiator sequence with octaves spread vertically. It is possible to select octave transposition for each step or to disable it completely. The velocity of each step in the sequence can be adjusted using the sliders below (3). The adjacent notes can be chained together (1) into one.

_images/arpeggiator.png

The chaining either generates legato in the Mono polyphony mode or joins two steps with equal octaves in the Dual and Poly modes.

The arpeggiator note memory can be temporary (with arpeggiator playing only the currently pressed notes), Latched arp_latch (notes stay in memory even after they are released), or Step-recorded arp_step. The order in which the notes are played out can be sorted Up arp_up, Down arp_down or Shuffled arp_shuffled.

Randomization

To make the pattern produced by the arpeggiator vary over time, some of the parameters can be set to be automatically randomized while the arpeggiator is playing:

  • Octave Walk random_keys periodically alters octave transpositions of the individual steps.

  • Chain Walk random_time alters the steps’ chaining.

  • Humanize alters note lengths.

Hints

  • To feed notes into the arpeggiator, the Feed Direction switch must be set to Arp or Both and the Feed button has to be active (indicated by flashing LED), as described in section Feed.

  • Depending on the Feed configuration, the arpeggiator can play in the background.

  • To release notes from the arpeggiator, press the Latch arp_latch button twice.

  • At least some octaves in the grid have to be enabled in order to make the arpeggiator output notes.

  • The arpeggiator can be fed from a separate MIDI channel as described in MIDI configuration. It can be also configured to output notes to a selected MIDI channel.

Effects

Vector has multiple effects connected to the output stage of the main mix of all Corners. Unlike Corners, the effects are independent of the Orbiter position.

The Effects’ parameters are accessible on the two bottom-most rows of encoders (depending on the Control switch configuration for some of them) with additional options available on the Effects screen screen_effects.

Hint

To hear the output of Reverb, Chorus or Delay, the respective knob in the Mixer section has to be turned up.

Vibrato and Tremolo

Vibrato and tremolo are effects which periodically modulate the pitch and amplitude of the played notes. They are characterized by two parameters, depth and speed.

Vibrato Depth controls the amount of the pitch variation and Tremolo Depth controls the amplitude variation, while Vibrato Speed and Tremolo Speed control the frequency of each variation.

The speed can be synchronized with the main Tempo using one of the switches in the Sync section.

Hint

To disable Vibrato or Tremolo, turn the respective Depth knob to zero.

Drive

Drive is derived from an overdrive effect known from guitar amplifiers where the input signal is saturated so that clipping occurs, adding a number of new harmonics to the signal.

The effect consists of a band-pass filter followed by a saturator, wired in parallel. The filter’s cut-off frequency is controlled by the Drive Colour knob, while Drive Amount controls both the input gain of the saturator and the contribution of the Drive effect to the final mix.

_images/drive.png

The Bypass drive_bypass button on the Effects screen screen_effects disables the saturator. In this case, the Drive Amout only sets the mix level of the effect’s band-pass filter.

Chorus

Chorus mixes together sounds played back at different pitches, resembling the effect of a choir or an orchestra section. It consists of several variable delay lines and an optional band-pass filter which are characterized by three parameters:

  • Chorus Depth controls the amount of detuning.

  • Chorus Speed determines the speeds of the variable delay lines (this can be synchronized with the main Tempo using one of the switches in the Sync section and additionally slowed down snail by a factor of two).

  • Chorus Colour controls the band-pass filter’s cutoff frequency if the filter is enabled bandpass.

The effect can operate in mono or stereo. If the Stereo Mode stereo is enabled, the effect’s output is different for the left and right channels.

Delay

The Delay effect adds a delayed version of the audio signal to the final mix.

Delay Time controls how much is the signal delayed and Delay Feedback controls the amount of output signal being fed back into the delay. The feedback signal is also affected by an optional Band-pass Filter bandpass.

If the Delay Feedback is set to a maximum (and the band-pass filter is disabled), the Delay effect behaves as a looper. If the feedback is set to zero, the internal audio buffer is fully cleared after one Delay Time period. If needed, the buffer can be cleared manually dustbin.

Delay can operate in mono or stereo. In the Stereo Mode stereo, the effect’s output is different for the left and right channels (“ping-pong”).

Hints

  • To feed notes into the delay, the Feed Direction switch must be set to Delay or Both and the Feed button has to be active (indicated by flashing LED), as described in Feed.

  • Try recording a sample played by the Arpeggiator and then play it over a different sequence.

Reverb

Reverb simulates the reverberation of sound in a physical environment caused by reflections from the boundaries (walls of a concert hall for example).

Reverb Size increases the persistence of the processed sound (in the same way as larger rooms produce longer reverberation), while Reverb Colour controls the cutoff frequency of a band-pass filter at the effect’s output.

The effect operates in stereo mode so its output is different for the left and right channels.